Partial and total correctness

Our explanation of when the triple $(\phi) P(\psi)$ holds was rather informal. In particular, it did not say what we should conclude if P does not terminate. In fact there are two ways of handling this situation. Partial correctness means that we do not require the program to terminate, whereas in total correctness we insist upon its termination.

Definition 4.5 (Partial correctness) We say that the triple $(\phi) P(\psi)$ is satisfied under partial correctness if, for all states which satisfy ϕ, the state resulting from P 's execution satisfies the postcondition ψ, provided that P actually terminates. In this case, the relation $\vDash_{\text {par }}(\phi) P(\psi)$ holds. We call $\vDash_{\text {par }}$ the satisfaction relation for partial correctness.

Thus, we insist on ψ being true of the resulting state only if the program P has terminated on an input satisfying ϕ. Partial correctness is rather a weak requirement, since any program which does not terminate at all satisfies its specification. In particular, the program

```
while true {x=0;}
```

- which endlessly 'loops' and never terminates - satisfies all specifications, since partial correctness only says what must happen if the program terminates.

Total correctness, on the other hand, requires that the program terminates in order for it to satisfy a specification.

